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Recently, model-based methods for the automatic segmentation of the heart chambers have been pro-
posed. An important application of these methods is the characterization of the heart function. Heart
models are, however, increasingly used for interventional guidance making it necessary to also extract
the attached great vessels. It is, for instance, important to extract the left atrium and the proximal part
of the pulmonary veins to support guidance of ablation procedures for atrial fibrillation treatment. For
cardiac resynchronization therapy, a heart model including the coronary sinus is needed.

We present a heart model comprising the four heart chambers and the attached great vessels. By
assigning individual linear transformations to the heart chambers and to short tubular segments building
the great vessels, variable sizes of the heart chambers and bending of the vessels can be described in a
consistent way. A configurable algorithmic framework that we call adaptation engine matches the heart
model automatically to cardiac CT angiography images in a multi-stage process. First, the heart is
detected using a Generalized Hough Transformation. Subsequently, the heart chambers are adapted. This
stage uses parametric as well as deformable mesh adaptation techniques. In the final stage, segments of
the large vascular structures are successively activated and adapted. To optimize the computational per-
formance, the adaptation engine can vary the mesh resolution and freeze already adapted mesh parts.

The data used for validation were independent from the data used for model-building. Ground truth
segmentations were generated for 37 CT data sets reconstructed at several cardiac phases from 17
patients. Segmentation errors were assessed for anatomical sub-structures resulting in a mean surface-
to-surface error ranging 0.50–0.82 mm for the heart chambers and 0.60–1.32 mm for the parts of the
great vessels visible in the images.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

Numerous algorithms for heart segmentation have been pub-
lished in the past (see Frangi et al. (2001) for a review). Most of the
algorithms have been designed for the segmentation of the left
and/or right ventricle. Respective methods comprise image driven
approaches using thresholds and clustering (Redwood et al., 2005),
fitting of simple geometric models to images (Cauvin et al., 1993),
active shape models (Fritz et al., 2005; van Assen et al., 2006,
2008), active appearance models (Mitchell et al., 2001, 2002;
Stegmann and Pedersen, 2005; Zhang et al., 2010), and flexible
deformable models that allow local deformations subject to a
ll rights reserved.
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smoothness constraint (McInerney and Terzopoulos, 1995; Kaus
et al., 2004; Montagnat and Delingette, 2005). Recently, appro-
aches have been proposed that allow the segmentation of the whole
heart with its four chambers using a geometric model (Ecabert et al.,
2008; Zheng et al., 2008) or registration-based techniques (Lötjönen
et al., 2004; Zhuang et al., 2010; Kirisli et al., 2010).

An important application of these methods is the characteriza-
tion of heart function. The geometric heart models resulting from
segmentation have, in addition, been increasingly used to guide
invasive therapeutic procedures. It has been proposed, for instance,
to overlay heart models onto live fluoroscopy data to support abla-
tion procedures for treating atrial fibrillation (Rhode et al., 2005;
Knecht et al., 2008) or stem cell injection for myocardial repair
(Gutiérrez et al., 2007; Lehmann et al., 2009). For these
applications, a heart model comprising only the four chambers is
often insufficient. It is, for instance, important to extract the left
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atrium and the proximal part of the pulmonary veins to support
guidance of ablation procedures for atrial fibrillation treatment.
For cardiac resynchronization therapy, a heart model including
the coronary sinus is needed to facilitate implantation of the
pacemaker lead.

We present a method for segmentation of the heart and the
attached great vessels. This method builds upon our previously
published method for the automatic segmentation of the heart in
computed tomography angiography (CTA) images (Ecabert et al.,
2006; Ecabert et al., 2008) which was successfully applied for the
automatic characterization of global heart function (Ghersin
et al., 2009; Coche et al., 2010; Plumhans et al., 2009; Abadi
et al., 2010). Briefly, the method detects the heart with an
adapted Generalized Hough Transformation (GHT) and performs
segmentation by adapting a generic heart model represented by
a surface mesh to images. This is done by successively adjusting
the global orientation and scaling, optimizing the parameters
characterizing shape variability of the heart, and performing a
deformable adaptation that roughly preserves shape. Robustness
is achieved by using optimal boundary detection functions
extracted from reference annotations using Simulated Search
(Peters et al., 2010).

For the combined segmentation of the heart and attached great
vessels, a properly extended geometric heart model and an empir-
ical parametrization for approximating the heart shape of different
individuals is presented. In particular, shape variations are de-
scribed by assigning individual linear transformations to the heart
chambers and to short tubular segments building the great vessels.
In that way, variable sizes of the heart chambers and bending of
the vessels can be described in a single consistent framework. Reli-
able adaptation of this complex heart model is achieved by first
adapting the heart model without the great vessels (Peters et al.,
2008). Afterwards the tubular segments of the large vascular struc-
tures are successively activated, initialized, and adapted. To opti-
mize the computational performance, the mesh resolution is
varied and already adapted mesh parts are frozen. Implementation
has been done in a way that the adaptation mechanisms build a
configurable framework that we call adaptation engine. The se-
quence of different steps and control parameters are encoded in
an extended model.

In the following section, the heart model with the attached great
vessels is presented. The section describes mesh generation and
geometry, the parametrization of shape variability, and the assign-
ment of boundary detection functions. Section 3 describes the
adaptation engine, the specific techniques used in the engine, and
the succession of the model adaptation steps as encoded in the ex-
tended model. Section 4 describes ground truth generation and re-
sults for the segmentation accuracy. Respective values are given for
individual structures. In addition, specific metrics have been used
to characterize segmentation performance for the great vessels.
Summary and conclusions are presented in the final section.
Fig. 1. 4-chamber heart model. The surface describes the endocardium except for
the left ventricle where the epicardial wall is also modeled. The colors show the
subdivision into different anatomical regions (epicardium of the left ventricle
(yellow), endocardium of the left ventricle (gray), right ventricle (light green), left
atrium (green), right atrium (light blue), aorta (red), trunk of the pulmonary artery
(light blue)).
2. Heart and vessel model

We start by providing information about the image data that
have been used to build the heart and vessel model. Then we pres-
ent the heart and vessel model itself. We describe how the model
geometry has been generated. For adapting the model to images it
is important to have a parametric description of its shape variabil-
ity. For that purpose we extend the description of shape variability
by multiple linear transformations (Ecabert et al., 2008) and show
how it can be used to model bending and diameter variations of
large vessels. Finally, information for boundary detection during
model adaptation is attached to each triangle. In this context, we
rely on the concept of Simulated Search (Peters et al., 2010).
2.1. Image data for model building

Allover, 35 data sets from 20 patients were used for model
building. The data sets were retrospectively reconstructed at vari-
ous phases of the cardiac cycle. They represent typical images that
can be expected in clinical routine for patients indicated for cardiac
CTA. The images were acquired with 16-, 40-, and 64-slice CT scan-
ners (Brilliance CT, Philips Healthcare, Cleveland, OH) and standard
CTA protocols with in-plane voxel resolution between 0.30 � 0.30
and 0.78 � 0.78 mm2 (typically 0.49 � 0.49 mm2), spacing be-
tween the slices between 0.4 to 2.0 mm (typically 0.4–0.5 mm)
and slice thickness varying from 0.6 to 3.0 mm (typically twice
the spacing between slices). The data sets comprise the 28 data
sets of Ecabert et al. (2008) and 7 additional data sets that were
particularly suited to construct the mesh geometry of the great
vessels.
2.2. Mesh model

A geometric mesh model of the heart and the major vessels can
be generated in various ways. Starting with an annotation of the
different structures in an image, the mesh could be constructed
from scratch. For us it was, however, important to re-use previ-
ously generated ground truth annotations and corresponding ref-
erence meshes. In addition, we wanted to have the meshes of the
vessels made of regular rings as this facilitates definition of the
shape variability. Hence, we used the 4-chamber heart model
(Fig. 1) of Lorenz and von Berg (2006) and Ecabert et al. (2008)
as starting point. This model consists of V = 7286 vertices com-
bined in T = 14,771 triangles and represents the average heart
shape of the 28 data sets used to build the model. We extended this
model by generating and attaching structured meshes of the great
vessels.

For that purpose, 7 CTA data sets were used in which the de-
sired vessels were properly contrasted. These data sets also include
the aortic arch and substantial portions of the superior and inferior
vena cava. The centerlines of the aorta, the superior vena cava, the
inferior vena cava, the coronary sinus, and the four pulmonary
veins (up to the first bifurcation) were interactively delineated in
these data sets and represented by equidistantly distributed
points. These centerlines were complemented with radius infor-
mation using a search-ray based approach. This approach casts
20 radial search rays, detects the position along a ray where the
intensity drops below a threshold, discards the 10% smallest and
10% largest values, and estimates a mean radius from the



Fig. 2. Heart model with the great vessels ((a and b): fine resolution; (c and d): low
resolution). As for the 4-chamber heart model, the surface describes the endocar-
dium except for the left ventricle where the epicardial wall is also modeled. The
tubular structures describe the vessel lumen (aorta (red), pulmonary veins (purple),
coronary sinus (orange), inferior & superior vena cava (orange)) and are composed
of regularly triangulated rings. For the low resolution mesh model only the
chambers are sub-sampled.
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remaining values. We manually adjusted the threshold in this
model building step in a way that the resulting radii describe the
vessel lumen.

In the second step, we generated the mean geometry of the
great vessels. For that purpose, the 4-chamber heart model was
adapted to the 7 CTA data sets and the pose of the undeformed
4-chamber model was determined by point-based registration to
the adapted heart model. After transforming the centerlines into
the coordinate system of the undeformed 4-chamber model,
average radii and centerlines were generated. For the centerline,
averaging was done by averaging the difference vectors between
two successive centerline points. This approach allows to take all
centerline information into account, though the centerlines for a
given vessel extracted from the 7 data sets varied considerably in
length.

In the final step, meshes of the great vessels were constructed
and attached to the 4-chamber heart model. After selecting a point
on the mean centerline within the respective vessel trunk of the 4-
chamber heart model, the normal plane at the selected point was
used to cut off the distal mesh part of the vessel trunk. We resam-
pled the vessel centerlines with a distance of 0.8 times the local
vessel radius and constructed meshes composed of regularly trian-
gulated rings. At the cut plane, the contour of the vessel trunk and
the respective centerpoint do not coincide with the corresponding
vessel contour and centerpoint, and a smooth transition between
both mesh geometries must be generated. Starting from the cut
plane we updated the centerline points of the great vessels with
the difference vector between respective centerpoints multiplied
by a weight factor exponentially decreasing towards the distal ves-
sel part. Analogously, the radial vectors pointing from the center-
line to the contour have been modified to generate a smooth
transition. Further details can be found in Peters et al. (2008).

Fig. 2a and b show the resulting 4-chamber mesh model with
the attached great vessels. The mesh model has V = 8506 vertices
and T = 17,324 triangles. The 8 attached great vessels are composed
of 99 individual rings and describe the vessel lumen. In addition,
Fig. 2c and d show a model variant with reduced mesh resolution.
This model has been generated by subsequently removing 4819
(56.7%) vertices building the heart chambers in a way that the
resulting triangles have similar size. The vertices of the low-resolu-
tion heart model are by construction a subset of the vertices of the
high resolution model.

2.3. Shape variability

To derive a parametric description of the shape variability, we
subdivide the reference model represented by the mesh vertices
m1, . . ., mV into K individual parts. The subdivision is described
by the weights wi,k, which could be defined by

wi;k ¼
1 if vertex i belongs to part k

0 otherwise

�
ð1Þ

if all parts would be independent. To each part a linear transforma-
tion T kðqkÞ½:� (e.g. similarity transformation, affine transformation)
is assigned that depends on the parameters qk. Accordingly, the en-
tire model can be transformed by

T multi-linearðqÞ½mi� ¼
XK

k¼1

wi;k � T kðqkÞ½mi� ð2Þ

and modified shapes can be generated by varying the parameters
q = (q1, . . . ,qK) of the transformations. As this approach would gen-
erate discontinuities between the individual parts, transition re-
gions between two or more parts are introduced where the
transformations are interpolated. Practically, this is done by assign-
ing weights 0 < wi,k < 1 with
XK

k¼1

wi;k ¼ 1 8i ð3Þ

in transition regions that depend on the geodesic distance to the
border between the parts.

Our approach to model shape variability by a multi-linear trans-
formation provides an empirical parametrization of an anatomical
shape. This parametrization is not derived by statistical analysis
from an ensemble of shapes as it is, for example, done in the con-
text of principal component analysis (Cootes et al., 1994). There is
also no mechanism that constraints the parameters to enforce a
realistic shape or that prevents overlaps of different parts. Rather,
it is assumed that accurate adaptation to images leads to a realistic
shape and limits or resolves issues with overlapping structures. A
prerequisite is that this approach provides enough flexibility to
approximate anatomical shapes of different individuals. For the
4-chamber heart model this has been shown and a more accurate
approximation of the heart shape for different individuals was ob-
tained than with eigenmodes resulting from principal component
analysis (Ecabert et al., 2006; Ecabert et al., 2008).

The subdivision of the heart chambers is done as described in
Ecabert et al. (2008). An affine transformation is assigned to the left
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atrium, the right atrium, the epicardium around the left ventricle,
the left ventricle together with the aortic trunk, and the right ven-
tricle together with the trunk of the pulmonary artery. For the at-
tached vessels, we combine between 3 and 6 successive structured
rings into short tubular segments. To each segment, we assign an
individual similarity transformation. Between two tubular seg-
ments, there is a transition region (7 mm for the aorta and 5 mm
for the other vessels) to preserve a smooth mesh geometry. Fig. 3
shows the heart model with the different tubular segments repre-
sented in different colors.

The description of shape variability by linear transformations
assigned to model subparts is a simple and intuitive approach,
though subdivision of the model is done manually. In the context
of our application it has several advantages. First, shape variations
of the heart chambers as well as bending and diameter variations
of the vessels can be described in a single, consistent framework.
Second, since shape variability is described by an empirical param-
etrization and not derived by statistical analysis, 7 data sets are
sufficient to define geometry and shape variability of the great ves-
sels. Third, parameter variations have by construction only a local
influence. That is, when changing the diameter of the descending
aorta, the heart chambers are not influenced. This is a difference
to approaches based on principal component analysis where mod-
ification of a single parameter usually influences all parts of the
model.

2.4. Assignment of boundary detection functions

For boundary detection, characteristic gray-value transitions
are searched along profiles parallel to the triangle’s normal n and
passing through its center c:

x̂ ¼ c þ arg max
i¼�l;...;þl

½Fðc þ idnÞ � Di2d2� � d � n ð4Þ

with x̂ denoting the detected boundary point, (2l + 1) d being the
profile length, d defining the sampling step size, and D biasing
boundary detection towards nearby points. The boundary detection
functions that we use are defined by

FðxÞ ¼ �Glimit
proj ðxÞ for Q kðxÞ 2 ½mink;maxk� 8k

0 otherwise

(
ð5Þ

with

Glimit
proj ðxÞ ¼ ðn � $IðxÞÞ � gmaxðgmax þ k$IðxÞkÞ

g2
max þ k$IðxÞk2 : ð6Þ
Fig. 3. Color-coded visualization of the combination of successive structured rings
into short tubular segments. A separate similarity transformation is assigned to
each group of rings. This multi-linear transformation enables the modeling of both
global bending and local diameter variation.
Here, I(x) denotes the gray-value at the point x;$ is the gradient
operator and gmax is a heuristic damping factor. The quantities
Qk(x) are, for instance, the gray-value I(x + dn) on one side of the
investigated position, and allow to discriminate different gray-value
transitions. For the parameters we use the same values as in Ecabert
et al. (2008) (d = 1.0 mm; D = 0.5 HU mm�2 and l = 10 for a short
search profile; D = 0.125 HU mm�2 and l = 20 for a long search pro-
file; gmax = 50 HU mm�1).

Individual boundary detection functions are defined for each tri-
angle by using triangle specific intervals [mink, maxk]. In order to
assign boundary detection functions and define the intervals [mink,
maxk] for each triangle, we use a number of annotated reference
images with corresponding meshes. At the mesh surface, vectors
comprising values for all criteria Qk are generated. By applying k-
means clustering to these vectors, we derive reasonable intervals
for the values of the criteria Qk and generate a large number of
boundary detection function candidates. Assignment of a boundary
detection function candidate to a triangle is done by Simulated
Search (Peters et al., 2010). Within this process, the triangle under
investigation is displaced, boundary detection is performed and the
boundary detection error (i.e. distance of the detected point to the
tangent plane at the triangle position) is recorded. This is done for
numerous displacements of the triangle, all reference images and
all boundary detection function candidates. At the end of the pro-
cess, the boundary detection function leading to the smallest
boundary detection error is assigned to the triangle.

Training of the boundary detection functions was done using all
35 data sets, the 28 data sets of Ecabert et al. (2008) and the 7 addi-
tional data sets that were used to construct the mesh geometry of
the great vessels. In a first step, the boundary detection functions
of the 4-chamber model were mapped onto the high resolution
heart model with the great vessels. The 7 data sets were used to
train boundary detection functions of the great vessels. In a second
step, the resulting model was adapted to 5 out of the 28 data sets
where all great vessels were inside the field-of-view and well con-
trasted. The segmentations were thoroughly corrected and the
boundary detection functions of the great vessels were trained
using the 7 + 5 data sets. In a third step, the resulting model was
used to segment all 35 data sets. Again, the segmentations were
thoroughly corrected. For the aorta, the inferior vena cava, and
the coronary sinus, reference segmentations could only be ob-
tained for a subset of the 35 data sets (26, 12, and 16, respectively),
because these structures were either not completely in the field-of-
view or weak contrast made a reliable segmentation impossible.

The resulting reference annotations were used to train the
boundary detection functions for the high and the low resolution
heart model (4 chambers, trunk of the pulmonary artery, pulmon-
ary veins and superior vena cava). Separate trainings were per-
formed for the aorta, inferior vena cava, and the coronary sinus
to handle the varying number of reference annotations. In all cases,
the gray values on both sides of the detected edge and the first and
second order Taylor coefficient of the local gray value profile were
used as criteria Qk. Respective Qk values in the reference images
have been clustered in C = 5 and 10 clusters. Acceptance intervals
[mink, maxk] were derived by rejecting the low and high 5% or
10% percentiles. In that way, 400 boundary detection function can-
didates were generated per training that use one or two of the cri-
teria Qk and associated acceptance intervals [mink, maxk].
Assignment of a specific boundary detection function to an individ-
ual triangle was done using Simulated Search with 147 positions
(21 positions on each profile of 20 mm length; 1 profile passing
through the triangle center and parallel to the triangle normal
leading to displacements of �10, �9, . . ., �1, 0, 1, . . ., 9, 10 mm;
three profiles laterally shifted by 10 mm with respect to the first
profile; three profiles passing through the triangle center and tilted
by 30 deg with respect to the first profile).



Table 1
Sequence of processing steps for the adaptation of the heart model with the great
vessels to cardiac CT images.

Step Method Comments Mesh parts

1 Localization Initialization of low-
resolution model

2 Parametric
adaptation

Similarity transformation Heart chambers and
vessel trunks

3 Localization Initialization of descending
aorta

4 Parametric
adaptation

Multi-linear transformation Heart chambers and
vessel trunks
+ distal segment of
descending aorta

5 Deformable
adaptation

Activation of tubular
segments

Heart chambers and
vessel trunks
+ distal segment of
descending aorta

+ 1st generation of
tubular
segments

6 Upsampling Initialization of high-
resolution model

7 Deformable
adaptation

Activation of tubular segments and
freezing of mesh parts

Heart chambers and
vessel trunks
+ distal segment of
descending aorta
+ 1st generation of
tubular segments

+ 2nd generation
of tubular segments

. . .
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3. Model adaptation

Automatic, accurate and fast adaptation of the heart model
with the great vessels requires various techniques. Table 1 sum-
marizes the sequence of processing steps: The heart chambers
are first localized and the low-resolution heart model is posi-
tioned. Pose misalignment is corrected by matching the heart
chambers and vessel trunks to the image using a global similarity
transformation. Afterwards the descending aorta is detected.
Adaptation of the heart chambers and the most distal segment
of the descending aorta is further refined by parametric adapta-
tion using a multi-linear transformation. In the following steps,
the model is accurately adapted using deformable adaptation
while the tubular segments are successively activated. After acti-
vating the 1st generation of tubular segments that are directly
connected to the vessel trunks and the most distal segment of
the descending aorta, the high-resolution heart model is initial-
ized. Deformable adaptation is continued while the remaining
tubular segments are successively activated. Already well-
adapted mesh parts are frozen in this step to speed-up
adaptation. Fig. 4 shows the heart mesh at various stages of the
adaptation pipeline for an example data set.

Implementation has been done in a way that these techniques
build a configurable algorithmic framework that we call adaptation
engine. The order of adaptation steps, the technique used in each
step, respective parameters, information for boundary detection
as well as the heart shape itself are part of the extended heart mod-
el that controls the engine. Fig. 5 illustrates the overall architec-
ture. First, we describe the techniques provided by the engine.
Afterwards, we provide the details about the processing order
and specific parameters settings.

3.1. Heart localization and adaptation

The basic methods for automatic model adaptation comprise
heart detection, parametric model adaptation and deformable
model adaptation. The latter two approaches comprise new exten-
sions to support partial model adaptation, incremental model
adaptation as well as acceleration techniques.

3.1.1. Localization
Localization of the heart is based on the Generalized Hough

Transformation (Ballard, 1981) and the 4-chamber model of
Fig. 1. The approach combines the R-tables of several reference
shapes to better capture variations in orientation and local shape
variability within an object class. Training and detection is per-
formed on subsampled images. The geometric transformations,
that the shape can undergo, are limited to translations and isotro-
pic scaling with a couple of factors (0.9, 1.0, and 1.1). The resulting
parameters are used to position the heart model with the great
vessels at a fixed orientation.

The details about the algorithm, implementation and parameter
settings are given in Ecabert et al. (2008). For training, the origi-
nally used 28 datasets have been complemented by the 7 data sets
used for the construction of the great vessels.

3.1.2. Parametric adaptation
A parametric description of the heart shape with vertices vi(q) is

obtained by applying a transformation T defined by the parame-
ters q to the mesh model with vertices mi:

v iðqÞ ¼ T ðqÞ½mi� ð7Þ

Accordingly, the center point of triangle i is given by

ciðqÞ ¼ ðv i1 ðqÞ þ v i2 ðqÞ þ v i3 ðqÞÞ=3 ð8Þ
with i1, i2 and i3 denoting the vertices building triangle i. The trans-
formation T may be a rigid, similarity, affine, or multi-linear
transformation.

For adaptation, boundary points x̂i are detected for a subset S of
triangles. Afterwards, the mesh coordinates are adjusted by mini-
mizing the external energy

EextðqÞ ¼
X
i2S

ewi
$Iðx̂iÞ
k$Iðx̂iÞk

� ðx̂i � ciðqÞÞ
� �2

ð9Þ

using a Gauss-Newton method (Gill et al., 1981). The weights

ewi ¼maxf0; Fiðx̂iÞ � D � ðx̂i � ciÞ2g: ð10Þ

reflect the reliability of a detected boundary and are considered as
constants during optimization. It is important to note that the
transformation T with associated parameters q and the set of trian-
gles S must be defined in a way that Eq. (9) has a well-defined min-
imum. In particular, no linear transformation T k should be
associated with a model part for which no boundary detection is
performed, when using a multi-linear transformation according to
Eq. (2). Boundary detection and mesh adaptation are repeated for
a pre-defined number of iterations.

The set S of triangles can be used in various ways. Performing
boundary detection for a subset of triangles that are homoge-
neously distributed over the model surface can be used to acceler-
ate model adaptation. The set may also be used to adapt model
parts. In particular, we use the set S to adapt the heart chambers
initially while neglecting the attached vascular structures.



Fig. 4. Heart mesh after step 1 (a), 2 (b), 4 (c), 6 (d) and 7 (e) of the adaptation pipeline (see Table 1) overlaid onto a saggital CTA image. The endocardium of the left ventricle
is represented in blue. The colors of the other anatomical parts are chosen as in Figs. 1 and 2. As it has been shown in Ecabert et al. (2008), segmentation accuracy of the heart
chambers is successively improved by parametric adaptation using a similarity transformation, parametric adaptation using a multi-linear transformation and deformable
adaptation. Segmentation of the great vessels is essentially done during deformable segmentation by successively initializing tubular segments using an already well adapted
structure.

Fig. 5. Overall architecture of the segmentation framework. The engine provides generic techniques for the automatic adaptation of a mesh model to images. The extended
heart model controls the engine. Apart from the mesh topology, boundary detection functions and shape variability information, it also defines the order of processing steps
and related parameters required to automatically segment the heart with the attached great vessels by model adaptation.
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3.1.3. Deformable adaptation
In the same way as parametric adaptation, deformable adapta-

tion is done by iterating boundary detection and mesh adjust-
ment for a pre-defined number of iterations. To support
adaptation of mesh parts, boundary detection can be done for a
set S of triangles. In addition, only a subset V of vertices which
we call active vertices are modified during mesh adjustment.
The other vertices are either frozen and belong to the set F or
inactive and belong to the set I . Frozen vertices belong to already
well adapted mesh parts and serve as boundary condition during
mesh adjustment. Inactive vertices are not taken into account
during mesh adjustment and are adapted in later stages of the
segmentation process.

In particular, mesh adjustment is done by minimizing

Eðq; fv i; i 2 V [ FgÞ ¼ Eextðfv i; i 2 SvgÞ
þ aEintðq; fv i; i 2 V [ FgÞ ð11Þ
with respect to the parameters q and the active vertices fv i; i 2 Vg
using the two-step approach described in Ecabert et al. (2008).
The set Sv #V [ F in the above equation denotes the vertices asso-
ciated with the triangles in set S. The parameter a balances the
external versus the internal energy and we use a = 60 HU mm�3.
The internal energy is defined by

Eintðq; fv i; i 2 V [ FgÞ

¼
X

i2V[F

X
j2N ðiÞ^jRI

XK

k¼1

wi;k ðv i � v jÞ
�

�ðT kðqkÞ½mi� � T kðqkÞ½mj�Þ
�2
; ð12Þ

where N ðiÞ is the set of indices of the first-order neighbor vertices
of vertex i. Again, the transformations T k with associated parame-
ters qk and the sets S; V; I and F must be defined in a way that
Eq. (11) has a well-defined minimum.
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3.2. Adaptation of the great vessels

Adaptation of the great vessels assumes that an initial segmen-
tation of the heart chambers is available. Afterwards the tubular
segments are successively initialized, activated, and adapted. This
approach allows to properly initialize the tubular segments for
deformable adaptation except for the case when the aortic arch
is not in the field-of-view. For that reason, a dedicated localization
algorithm for the descending aorta has been introduced.

3.2.1. Descending aorta localization
The descending aorta is localized within an axial slice that is

determined from the most distal tubular segment of the descend-
ing aorta after positioning the heart model and optimizing its glo-
bal orientation and scaling. Localization is done with a modified 2D
Hough transformation (Hough, 1962) for circles. Candidate edges
are detected using 3D methods and additional criteria are applied
to reduce the number of candidates. For instance, a candidate edge
is only considered, if its 3D gradient is sufficiently parallel to the
axial plane (i.e. the angle between the 3D gradient vector and the
axial plane should be smaller than 26.6 deg). In addition, edges
with gradient magnitude or gray-value difference outside pre-de-
fined ranges are skipped. During accumulation, the homogeneity
within the associated circle is taken into account. To ensure that
circular arcs are suppressed and only almost complete circular
structures are detected, the circle is subdivided into 4 wedges
and the associated counts are accumulated separately. The final
vote is obtained by multiplying the results of four wedges building
a circle and the circle with the maximum final vote represents the
localization result for the descending aorta.

3.2.2. Adaptation of tubular segments
During deformable adaptation, the set V of active vertices con-

sists of the vertices of the heart structures and tubular segments
that are currently being adapted (i.e., these vertices belong to a tri-
angle out of the set S for which boundary detection is performed)
and of the vertices building the directly connected tubular seg-
ments. The weights wi,k of the multi-linear transformation
T multi-linear are defined in a way that respective tubular segments
use the same transformation as the mesh part they are connected
to. With this mechanism, the shape of these tubular segments is
defined by the internal energy and their orientation is defined
via the transformation T multi-linear. This mechanism ensures a
smooth transition between mesh parts that are currently being
adapted and the directly connected tubular segments, for which
deformable adaptation can be activated in a subsequent iteration.

In order to activate the adaptation of a tubular segment, bound-
ary detection is enabled by adding its triangles to the set S and the
multi-linear transformation T multi-linear is complemented by the
transformation describing its shape variability. If a further inactive
tubular segment is connected, its vertices are added to the set V of
active vertices and the weights wi,k are defined in a way that both
tubular segments use the same transformation.

3.3. Acceleration techniques

Computation time can be crucial, especially in an interventional
context. For that reason, acceleration techniques are important for
rapidly adapting the heart model with the attached great vessels to
images. Multi-resolution meshes as well as mesh freezing have
been introduced before and we outline the realization of both tech-
niques in our adaptation engine.

3.3.1. Multi-resolution meshes
To support multi-resolution meshes, the actual mesh geometry

corresponding to a low resolution mesh model can be used to ini-
tialize the mesh geometry corresponding to a high resolution mesh
model. The implemented mechanism assumes that for each vertex
of the first model there is a corresponding vertex in the second
model. The new vertices are interpolated by minimizing the inter-
nal energy.

Let the quantities v1,i, v2,i, m1,i, m2,i, N1 and N2 (N1 < N2) denote
the vertices v of the actual mesh geometry, the vertices m of the
reference model, and the number N of vertices referring to the low
resolution and high resolution model, respectively. For simplicity
of the notation we assume that corresponding vertices have corre-
sponding indices, i.e. vertices with indices 6N1 are corresponding
vertices in the low resolution and high resolution model, whereas
vertices with index >N1 are the additional vertices of the high reso-
lution model. In addition, the sets V1 and V2ðV1 #V2Þ as well as F1

and F2 ðF1 #F2Þ denote corresponding mesh parts. In a first step,
the parameters q of the transformation T multi-linear associated with
the high resolution mesh are computed by minimizing

EregðqÞ ¼
X

i2V1[F1

ðv1;i � T multi-linearðqÞ½m2;i�Þ2 ð13Þ

resulting in the parameters q⁄. In a second step, the vertices v2,i are
initialized. The corresponding vertices are copied (v2,i = v1,i for
i 2 V1 [ F 1). After minimization of the internal energy
Eintðq�; fv2;i; i 2 V2 [ F2gÞ with respect to the additional vertices
fv2;i; i 2 V2 [ F2 ^ i > N1g, initialization of the high resolution mesh
is completed.

3.3.2. Mesh freezing
Mesh parts can be frozen after a pre-defined number of itera-

tions. For that purpose, vertices are removed from the set V of ac-
tive vertices and added to the set F of frozen vertices. Savings in
computation time result from two effects. First, it is not necessary
to perform boundary detection for triangles where all vertices are
frozen and the set S can be adapted accordingly. Second, less vari-
ables need to be considered, when adjusting the mesh coordinates
by minimization of Eq. (11).

3.4. Adaptation of the heart and vessel model

Having introduced the different techniques for model adapta-
tion, we now describe the sequence of processing steps (see Ta-
ble 1) in more detail. In addition, we provide information about
the parameter settings used in the different steps.

3.4.1. Localization and parametric adaptation
After GHT-based heart localization, the low resolution heart

model (Fig. 2c and d) is placed in the image volume (Fig. 4a). In
the next step, location, orientation and scaling are adjusted using
parametric model adaptation (Eq. (9)) and a global similarity trans-
formation as transformation T . Boundary detection is performed
for the heart chambers and vessel trunks, and the associated trian-
gles build the set S. Altogether, 20 iterations of boundary detection
and mesh adaptation are performed.

The descending aorta is poorly initialized in this stage (Fig. 4b).
Using the resulting similarity transformation, the gravity center of
the most distal tubular segment of the descending aorta is com-
puted and aorta detection is carried out in the corresponding axial
image slice. Model adaptation is further refined by parametric
adaptation using a multi-linear transformation (Fig. 4c). For the
heart chambers and vessel trunks, the multi-linear transformation
is defined as in Ecabert et al. (2008). An additional similarity trans-
formation is used for the most distal tubular segment of the aorta.
Furthermore, the triangles of the most distal tubular segment of
the descending aorta are added to the set S. Parametric adaptation
with the multi-linear transformation is finalized after 20 iterations.
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3.4.2. Deformable adaptation and vessel segmentation
For deformable adaptation, the number of iterations is defined

per structure. Additionally, the number of iterations, after which
a tubular segment is activated, is defined. In this way, simple as
well as complex adaptation schemes can be realized.

Adaptation of the low resolution mesh is done in 10 iterations.
Within the first 9 iterations, the heart chambers with the attached
vessel trunks and the most distal segment of the descending aorta
are adapted. Then, the first generation of tubular segments is acti-
vated and one additional iteration is performed. Afterwards, the
resulting mesh is up-sampled (Fig. 4d).

Deformable adaptation is continued with the high resolution
heart model. In particular, segmentation of the heart chambers
is slightly refined and the tubular structures are successively acti-
vated and adapted to the image (Fig. 4e). The adaptation scheme
is complex. Adaptation of the heart chambers and vessel trunks is
performed for 2 iterations. Afterwards respective vertices are fro-
zen by removing them from the set of active vertices V and add-
ing them to the set of frozen vertices F . Deformable adaptation of
the tubular segments is performed for 8–14 iterations. Again,
respective vertices are afterwards frozen. Activation of the next
tubular segment takes place after 4–10 iterations. The exact num-
bers differ for different vessels and tubular segments. To guaran-
tee a smooth transition between two connected segments, at least
four iterations are performed where both segments are adapted
to the image. Overall, deformable adaptation of the high resolu-
tion heart model with the great vessels is completed after 20
iterations.

3.4.3. Parameter selection
A considerable number of parameters must be defined for train-

ing and model adaptation, and we provided the parameter values
in the preceding sections. In general, we use the same values as
Ecabert et al. (2008), where also the stability with respect to spe-
cific parameters of the basic concepts of our model adaptation ap-
proach has been discussed. New values were introduced for the
number of iterations during deformable adaptation as different
mesh resolutions are used and the number of iterations are defined
per part. These iteration numbers are empirically selected in a way
that they limit computation time while leading visually to a good
segmentation. Larger iteration numbers will slightly change the
segmentation, but are not expected to lead to clear improvements
without modifying other parameter such as the sampling distance
for boundary detection (d = 1 mm) at the same time. In general,
further improvements may be achieved by systematically testing
parameter value combinations and selecting those values that
minimize a metric of the segmentation accuracy as used during
validation. For instance, Hautvast et al. (2006) performed full facto-
rial experiments and analyzed the results using the technique of
analysis of variances (ANOVA).
4. Validation

We first outline the material used for validation. Specifically, we
describe how ground truth segmentations have been derived in a
practicable and consistent manner. We then introduce several er-
ror metrics to validate the distinct types of anatomical structures
composing the heart model. Finally, we present and discuss
numerical results along with segmentation examples.

4.1. Data

The validation of the presented method was carried out on CT
images reflecting the variability in terms of quality, noise, field of
view, etc., which can be expected in clinical routine. We selected
NI = 37 data sets retrospectively reconstructed at various phases
of the cardiac cycle from 17 adult patients clinically indicated for
cardiac CTA. To avoid a bias, these images were from different pa-
tients than the images used for model building and training. The
images were acquired with 16-, 40-, and 64-slice CT scanners (Bril-
liance CT, Philips Healthcare, Cleveland, OH, USA) and standard
coronary CTA protocols with in-plane field of view varying from
144 � 144 to 255 � 255 mm2 and craniocaudal coverage ranging
from 110 to 268 mm. The in-plane voxel resolution was between
0.28 � 0.28 and 0.49 � 0.49 mm2 (typically 0.49 � 0.49 mm2). The
spacing between the slices was between 0.33 and 0.50 mm (typi-
cally 0.4–0.5 mm) and the slice thickness was in all cases twice
as large as the spacing. The gray level distribution of the blood pool
in the chambers and vessels may vary due to differences in arrival
times of the contrast agent bolus. This can strongly reduce the con-
trast between the most distal parts of the vessels and the sur-
rounding structures. As for the training data, the aortic arch was
not covered in all images.

4.2. Ground truth segmentation

A multi-step approach was conducted to obtain accurate
ground truth segmentations of the test images. The extended heart
model and adaptation method were applied to the new images.
The resulting meshes were then converted into annotation masks
of same resolution as the underlying images, and each voxel en-
closed by the mesh was assigned a distinct organ code. This anno-
tation was represented as a multi-color mask overlayed on the
original image to enable detailed local corrections, and the masks
were thoroughly manually edited by a clinical expert. These ex-
pert-edited masks are considered as ground truth annotations in
our experiments.

In order to generate ground truth meshes, for mesh-based com-
parisons, the ground truth masks were converted into gray level
images by assigning a distinct gray value to each color code. The
boundary detection functions of the heart model (see Section 2.4)
were then modified to detect the expected transitions in these
gray-plateau images and the model was adapted following the
scheme described in Section 3. The resulting meshes were in-
spected by the clinical expert and corrected where needed. These
expert-edited meshes are considered as ground truth meshes in
our experiments.

With this approach to generate ground truth, it is measured
during validation how much the automatic segmentation deviates
from a segmentation that is acceptable for a clinical expert. A dis-
advantage of this approach is that the segmentation error is under-
estimated if the manual corrections are not thoroughly performed.
A completely independent segmentation method for ground truth
segmentation would prevent this bias, but manual segmentation
leading to accurate and consistent 3D segmentations of complex
anatomical structures such as the heart with the great vessels is
a complex research topic in itself.

4.3. Error metrics

The different parts composing the extended vessel model can be
divided into two structurally different groups. The chambers have
a rounded shape, whereas the vessels are elongated tubular struc-
tures. To account for these structural differences, several error
metrics have been used to measure the quality of the segmentation
results.

4.3.1. Constrained point-to-surface distance
To characterize the accuracy of surface detection, we use the

concept of constrained point-to-surface (CPS) distance as intro-
duced by Ecabert et al. (2006). Let
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ePðrÞ cadapt; j
i ; c ref;j

i

� �
¼ min

x2P r;c ref;j
ið Þ
kcadapt; j

i � xk ð14Þ

be the smallest Euclidean distance between the triangle center ci of
the adapted mesh in image j and a surface patch P of geodesic ra-
dius r surrounding the corresponding triangle center in the refer-
ence mesh. For r = 0, eP(0) corresponds to the point-to-point
distance between corresponding triangle centers and for r ?1,
eP(1) corresponds to the distance between the triangle centers
and the surface of the other mesh. We set r = 10 mm in the experi-
ments. This radius gives a good approximation of the point-to-sur-
face distance while preventing meaningless comparisons between
close, but non-corresponding surfaces.

As this distance is not symmetric (from one mesh to the other or
vice versa), we define the mean CPS distance as

eCPS
mean ¼

1
NI �M

XNI

j¼1

XM

i¼1

1
2

ePðrÞ cadapt; j
i ; c ref ;j

i

� ��
þ ePðrÞ cref;j

i ; c adapt;j
i

� ��
: ð15Þ

The inner summation adds up the unsigned distances or unsigned
errors for the whole mesh (i.e., M = T) or for a specific substructure.
The outer summation is performed over the available data sets.

4.3.2. Constrained point-to-centerline distance
Centerline-to-centerline distances are good indicators of the

accuracy of the vessel course. Similarly to the CPS distance, we
introduce the constrained point-to-centerline (CPC) distance. The
centerlines are defined as sequences of straight line segments con-
necting the centers of successive vertex rings of the tubular
meshes. Let

eKðlÞ padapt; j
i ;pref; j

i

� �
¼ min

x2K l;pref ;j
ið Þ
kpadapt;j

i � xk ð16Þ

be the smallest Euclidean distance between a centerline point pi

from an adapted centerline in image j and an interval K of length
2 � l surrounding the corresponding point in the reference center-
line. We set l = 10 mm for the experiments. We define the mean
CPC distance similarly to the previous metric as

eCPC
mean ¼

1
NI � Ns

XNI

j¼1

XNs

i¼1

1
2
ðeKðlÞðpadapt; j

i ;p ref ; j
i Þ

þ eKðlÞðpref ;j
i ;padapt; j

i ÞÞ: ð17Þ

where Ns is the number of segments composing a centerline.

4.3.3. Volume overlap
The third metric is based on volume overlap. Volume mea-

surements are commonly used in clinical routine to determine
global functional parameters such as stroke and ejection fraction
(Frangi et al., 2001). The adapted and reference meshes are
converted to annotation masks with voxel resolution 0.2 � 0.2 �
0.2 mm3. This resolution is finer than the resolution of the
actual data to reduce inaccuracies caused by the discretization
process.

Let eoverlap(Radapt, j,Rref, j) be the relative volume overlap between
a region R enclosed by the adapted mesh in image j and the corre-
sponding region in the ground truth annotation defined as

eoverlapðRadapt; j;Rref; jÞ ¼ jR
adapt; j \ Rref;jj
jRadapt; jj

ð18Þ

where j.j is the cardinality operator. The mean volume overlap is de-
fined by
eoverlap
mean ¼ 1

NI

XNI

j¼1

1
2

eoverlapðRadapt; j;R ref; jÞ
�
þeoverlapðRref ; j;Radapt; jÞ

�
: ð19Þ

According to Eq. (9), the triangles are allowed to slide along im-
age boundaries at no cost. For that reason, we use a slightly differ-
ent definition of the volume overlap for the vessels. Let
eoverlap

e ðRadapt; j
i ;R ref ; j

½i�e;iþe�Þ be the overlap between the region defined
by ring Ri of the adapted mesh in image j and the region R[i�e,i+e] de-
fined by the concatenation of neighboring rings of the reference
mesh, i.e.

eoverlap
e Radapt; j

i ;R ref; j
½i�e;iþe�

� �
¼
jRadapt; j

i \ Rref; j
½i�e;iþe�j

jRadapt; j
i j

: ð20Þ

For the vessels, the mean volume overlap is defined as

evessel overlap
mean ¼ 1

NI � Ns

XNI

j¼1

XNs

i¼1

1
2

eoverlap
e ðRadapt; j

i ;R ref; j
½i�e;iþe�Þ

�
þeoverlap

e Rref ; j
i ;Radapt; j

½i�e;iþe�

� ��
ð21Þ

where Ns is the number of rings composing a vessel. In the experi-
ments we set e = 2 corresponding approximatively to the interval
K = 20 mm used for the constrained point-to-centerline distance.
Note that setting e = 0 in Eq. (21) leads to Eq. (19) used for the
chambers.

4.3.4. Remarks on statistics calculation
Two effects lead to meaningless comparisons and for that rea-

son a subset of triangles has been removed from the error mea-
surements. The first effect is due to the fact that the tubes in the
model have been truncated at arbitrary lengths. As the triangles
are allowed to slide along image boundaries at no cost (see Eq.
(9)), the length of the adapted vessels may vary from image to im-
age. The metrics defined above would thus indicate an error due to
a longitudinal displacement while the segmentation is actually
correct. For that reason, 30 distal rings of the 8 vessels (i.e., about
one tubular segment per vessel) were removed from the error cal-
culation in all metrics.

In addition, the distal parts of the inferior vena cava and the cor-
onary sinus are often not contrasted in the CT images used for val-
idation. These areas were identified by the clinical expert during
ground truth generation and the corresponding vessel rings in
those images are removed from the statistics. The number of ex-
cluded rings varies in each image and is dependent on the contrast
filling these vessels.

The statistics calculation also excludes the triangles and rings
which are outside the image volume. This can occur in certain
images, e.g., at the top of the aortic arch or at the distal parts of
the inferior or superior vena cava.

4.4. Results

Figs. 6–8 show segmentation results for three different patients.
The visual impression of the cross-sections with the overlaid con-
tours can be misleading with regard to a 3D assessment of the seg-
mentation result. For example, if the local mesh surface is almost
parallel to the displayed cross-section, the distance between the
desired visible border and the segmentation contour may appear
to be much larger than the 3D distance to the desired border. In
addition, borders related to the truncation of a vessel can be
misleading.

The CPS distance for the whole mesh is between 0.31 and
1.16 mm with a mean of 0.70 mm for the 37 data sets used during
validation. The detailed validation results for the CPS distance, CPC
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distance, and volume overlap are presented in Tables 2–4, respec-
tively. The standard deviation sCPS

triangle and sCPC
line for the CPS distance

and the CPC distance refer to the individual errors of all triangles
or line segments composing an anatomical region in all images
and not to the standard deviation of the mean error for different
images. In Table 2 the error distribution per interval is also pro-
vided. The percentages of triangles within various error ranges
are derived from the errors per triangle averaged over all images.
These values give an indication whether triangles are systemati-
cally off from the ground truth.
4.5. Discussion

The visual inspection of the results indicates that the proposed
approach was capable of automatically segmenting the cardiac
chambers and great vessels in all test images. As can be seen in
Figs. 6–8, overlaps of different model parts are largely avoided by
the proper adaptation of the heart model to images though there
is no explicit mechanism preventing overlaps. The aorta could be
successfully extracted even if part of the arch was missing in the
image. This demonstrates that a single framework can be used to
simultaneously adapt a mesh to both rounded and tubular struc-
tures by appropriately assembling and activating connected
deformable shape models.
4.5.1. Chambers
The mean CPS distance and the standard deviation are reported

in Table 2 for each anatomical region separately. This table indi-
cates the accuracy which can be achieved by the adapted model
when retrieving the surface of the anatomical regions in the image.
This table shows similar numerical results as those published by
Ecabert et al. (2008), which were achieved for a heart model with-
out appended tubular structures and with no acceleration tech-
niques. The increased model complexity and the acceleration
techniques do not seem to affect the accuracy of the chamber
segmentation.

It can be observed that all chambers present a similar mean dis-
tance and error distribution. The variable regions of the atrial
appendages on both sides of the heart and the difficulty in defining
the boundary of the left ventricular endocardium in the vicinity of
the papillary muscles may be the reason for a slightly increased
mean error of these structures. The volume overlap of the different
Fig. 6. Segmentation results for the heart model with the great vessels (patient 1). Fou
results overlaid. The endocardium of the left ventricle is represented in blue. The colors
anatomical regions is reported in Table 3. These values indicate
also that the cardiac chambers are well reconstructed.

These results compare favorably to recently published studies
on automatic whole heart segmentation. Zheng et al. (2008) re-
ported a mean point-to-mesh error of 1.13–1.57 mm for the differ-
ent chambers by adapting a point distribution model (PDM) of the
four chambers to CT images with in-plane resolution between
0.28 � 0.28–0.74 � 0.74 mm2 and a slice-to-slice distance of 0.4–
2 mm. Kirisli et al. (2010) published a mean error of 1.25 mm
(varying between 0.63–1.53 mm for the different chambers) using
a multi-atlas segmentation approach for CT images with a resolu-
tion of 0.32 � 0.32 � 0.4 mm3. They also reported a mean Dice sim-
ilarity coefficient of 88.3–94.6%.

We can also compare our results with studies on whole heart
segmentation carried out with MR images. Lötjönen et al. (2004)
reported a mean point-to-surface error of 2.53 mm by simulta-
neously registering a 3D atlas of the four chambers to short and
long axis MR images with in-plane resolution of 1.0 � 1.0 or
1.4 � 1.4 mm2 and 6–7 mm slice thickness. Zhuang et al. (2010)
introduced a whole heart segmentation framework combining lo-
cally affine registrations followed by free-form deformations with
adaptive control point status. This approach achieved a mean
point-to-surface error of 2.14 mm (ranging 1.47–2.38 mm) and a
mean overlap ranging 63–85% for the different chambers on MR
images with a reconstructed resolution of 1.0 � 1.0 � 1.0 mm3.
For a comparison with other work on chamber segmentation, we
refer to Peters et al. (2010).
4.5.2. Great vessels
The mean CPS distance for the aorta, the pulmonary veins and

the superior vena cava is in the same range as for the chambers,
however somehow larger for the coronary sinus and the inferior
vena cava (Table 2). A similar effect can be observed for the mean
CPC distance (Table 4). This large error is mainly due to missing or
very faint contrast in these vessels. For instance, this effect can be
observed in the images of the second column of Figs. 7 and 8 for the
inferior vena cava. In particular, the proximal part of the inferior
vena cava is usually contrasted and correspondingly well seg-
mented by the model, whereas the distal part presents almost no
contrast with the surrounding structures. In this latter case,
prior-shape knowledge controls the adaptation. Fig. 9 illustrates
these effects for the coronary sinus. In Fig. 9a and b, the model
r coronal views across the volume are shown without and with the segmentation
of the other anatomical parts are chosen as in Figs. 1 and 2.



Fig. 7. Segmentation results for the heart model with the great vessels (patient 2).

Fig. 8. Segmentation results for the heart model with the great vessels (patient 3).

Table 2
Constrained point-to-surface error eCPS

mean, standard deviation sCPS
triangle and percentages of triangles within various error ranges for the different cardiovascular regions resulting from

the fully automatic segmentation.

Anatomical region eCPS
mean (mm) sCPS

triangle (mm) Percentage of triangles with various error ranges (mm)

<1.0 1.0–2.0 >2.0

Whole mesh 0.70 1.03 79.9 19.1 1.0
Left atrium 0.70 0.87 87.0 9.0 4.0
LV endocardium 0.77 1.14 76.4 23.4 0.2
LV epicardium 0.68 0.96 80.5 19.3 0.2
Right atrium 0.82 1.00 65.1 33.5 1.4
Right ventricle 0.63 0.66 87.9 12.1 4.2
Pulmonary artery trunk 0.50 0.49 100.0 0.0 0.0
Aorta 0.60 1.14 86.9 13.1 0.0
Pulmonary veins 0.60 0.72 95.3 4.7 0.0
Superior vena cava 0.64 0.74 59.7 36.7 3.6
Inferior vena cava 0.90 1.14 71.3 21.4 7.3
Coronary sinus 1.32 2.25 25.2 72.3 2.5

O. Ecabert et al. / Medical Image Analysis 15 (2011) 863–876 873
could track the coronary sinus which is well contrasted. Fig. 9c and
d show a bad adaptation of the coronary sinus in case of poor or
missing contrast. The coronary sinus also overlaps with the left at-
rium in the latter case, illustrating that the prevention of overlaps
relies on the proper adaptation of the heart model to the image.
Nevertheless, with the exception of the coronary sinus, the re-
ported mean CPC errors are well below the respective vascular ra-
dii which are given in Table 5.



Table 3
Volume overlap for the different cardiovascular regions
resulting from the fully automatic segmentation.

Anatomical region eoverlap
mean (%)

Left atrium 95.3 ± 1.6
LV bloodpool 95.0 ± 3.4
LV myocardium 96.2 ± 1.2
Right atrium 94.6 ± 2.0
Right ventricle 95.4 ± 1.4
Pulmonary artery trunk 94.0 ± 2.5
Aorta 95.2 ± 8.8
Pulmonary veins 83.2 ± 12.5
Superior vena cava 87.7 ± 17.4
Inferior vena cava 84.9 ± 9.0
Coronary sinus 70.4 ± 28.1

Table 4
Constrained point-to-centerline error eCPC

mean and standard deviation sCPC
line for the great

vessels resulting from fully automatic segmentation.

Anatomical region eCPC
mean (mm) sCPC

line (mm)

Aorta 0.66 1.43
Pulmonary veins 0.86 1.04
Superior vena cava 1.20 2.38
Inferior vena cava 2.18 1.92
Coronary sinus 1.77 2.77

Fig. 9. Oblique views of four patients emphasizing on the coronary sinus (orange).
Images (a and b) show how the proximal part of the coronary sinus model correctly
tracks the corresponding structure in the image. In the images (c and d) the
coronary sinus is mis-segmented due to poor or missing contrast.

Table 5
Mean vessel radius determined from the ground truth
meshes.

Anatomical region Mean radius (mm)

Aorta 13.6 ± 2.6
Pulmonary veins 7.4 ± 1.0
Superior vena cava 9.6 ± 1.1
Inferior vena cava 12.8 ± 1.4
Coronary sinus 3.7 ± 0.9

(a) (b)

Fig. 10. Illustration of the dependence of the volume overlap on the vessel
diameter. The same lateral shift reduces the overlap more strongly for a small (b)
than for a large vessel cross-section (a).
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Volume overlap (see Table 3) is particularly sensitive for thin
structures as illustrated in Fig. 10. For the aorta, which has the larg-
est diameter and which is usually well contrasted, we can achieve
a similar performance as for the chambers. On the other hand, the
coronary sinus, which is also the thinnest vessel and usually poorly
contrasted, presents the lowest overlap in agreement with the
errors reported in Tables 2 and 4.
To our knowledge, this is the first published approach present-
ing the simultaneous segmentation of the chambers and all great
vessels with a single method, making a direct quantitative
comparison difficult. Zhao et al. (2009) combine level-set and opti-
mal surface segmentation algorithms in a single optimization pro-
cess to extract the aorta from 4D (3D + time) MR images
(1.5 � 1.5 � 6.0–2.0 � 2.0 � 6.0 mm3 voxel size) achieving a mean
unsigned positioning error of 1.55 mm. We can also mention the
work of de Bruijne et al. (2003) who introduced an adapting active
shape model for tubular structure segmentation. They applied
their technique to the segmentation of thrombus on abdominal
aortic aneurisms in CT images with a resolution of
0.488 � 0.488 � 2.0 mm3 and reported a surface root mean square
error of 1.9 mm and a volume overlap of 95%.

The segmentation of the left atrium and pulmonary veins is
important to support planning and guidance of ablation proce-
dures for atrial fibrillation treatment. Several approaches have
been introduced to extract the anatomy of the left atrium and pul-
monary veins (John and Rahn, 2005; von Berg and Lorenz, 2005;
Karim et al., 2008). However, the focus is on the segmentation of
the left atrium and the pulmonary veins are extracted in a subse-
quent processing step. No quantitative measurements are reported
for these vessels.

4.6. Computation time

The experiments were carried out on a workstation with 2
Dual-Core Intel Xeon processors (2.33 GHz, 4 GB RAM) and compu-
tation times of 12 ± 1 s were measured for the complete segmenta-
tion. The time for the different steps of the processing chain
(Table 1) was 1.1 s for GHT-based heart detection (step 1), 4.3 s
for parametric adaptation (steps 2–4), 2.2 s for deformable adapta-
tion with the low resolution mesh (step 5), 0.5 s for upsampling
(step 6), and 3.9 s for deformable adaptation with the high resolu-
tion mesh (step 7). Even if the computer settings are not identical,
the computation time achieved for the adaption of the extended
heart model is comparable to our 4-chamber model (Ecabert
et al., 2008). A mean adaptation time of 4 s was reported by Zheng
et al. (2008) for a model including the four chambers (without
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vessels). Other approaches based on image registration for the
automatic segmentation of the four chambers reported processing
times of 25 min (Kirisli et al., 2010) (at reduced image resolution)
and 2–4 h (Zhuang et al., 2010).

5. Summary and conclusions

An automatic model-based approach for the segmentation of
the whole heart and the attached great vessels is presented. A ma-
jor contribution of this article is the adaptation of a geometric
model combining structurally different parts, such as rounded car-
diac chambers and elongated vessels, using a single and consistent
framework.

The shape variability is described by an empirical parametriza-
tion and defined using a multi-linear transformation. In particular,
each chamber is assigned an affine transformation whereas the
great vessels are represented by the concatenation of short tubular
segments, each of them undergoing a similarity transformation.
This representation enables the consistent description of inter-
phase and inter-patient chamber variations, and appropriate bend-
ing of the vessels.

The adaptation of this model to an image is controlled by a flex-
ible engine which uses different techniques such as GHT-based
detection, parametric model adaptation and deformable model
adaptation, and schedules when and how the different parts of
the model are adapted. The adaptation engine can also control
the mesh resolution and the number of iterations needed for each
part of the models separately. An efficient and accurate segmenta-
tion can be achieved by dynamically activating and freezing the
different parts of the model.

For validation, 37 data sets were used. These data sets originate
from different patients than the data used for model building and
training. The proposed approach could successfully segment the
heart and the attached great vessels in all of the 37 data sets. Sev-
eral metrics were used to validate the different types of anatomical
structures composing the model. A mean point-to-surface error
ranging 0.50–0.82 mm for the heart chambers and 0.60–1.32 mm
for the visible parts of the great vessels is reported. The volume
overlap ranges 94.0–96.2% for the heart chambers and 70.4–
95.2% for the great vessels.

This approach is fast and promises to facilitate and accelerate
quantitative image analysis for clinical diagnostics and to support
the treatment of cardiac disease. Examples are guidance for abla-
tion procedures in the treatment of atrial fibrillation or guidance
for the implantation of electrodes in cardiac resynchronization
therapy.

The presented architecture together with Simulated Search (Pe-
ters et al., 2010) for the training of boundary detection functions
promises the adaptation to new segmentation tasks with a reason-
able amount of effort. Future directions of our research are in
including additional anatomical structures, such as the detailed
aortic valve (Wächter et al., 2010), and in making use of the pro-
posed architecture to address other modalities, e.g. MR (Peters
et al., 2007), and other organs such as the brain (Kneser et al.,
2009).
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