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Abstract 

Philips has introduced its first whole body 
sequential PET/MR system, the Ingenuity TF 
PET/MR. We present the current status of 
MR-based attenuation correction (MRAC) 
technique. MRAC consists of MR image 
acquisition, segmentation, truncation 
compensation (TC), µ-value assignment, 
as well as correction for patient table and RF 
coils. These components have been described 
last year ; this paper focuses on updates of the 
two most critical steps of MRAC: segmentation 
and TC. The segmentation algorithm attempts 
to distinguish three biological classes: air, lungs, 
and soft tissue. It combines an intensity-based 
region-growing technique with lung-model 
adaptation. For TC, the following three-step 
approach to correct for truncation in 
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the MR-based attenuation map has been 
developed and investigated. (A) Areas in the 
attenuation map which are possibly truncated 
are identified. (B) For these areas, an estimate 
of the outer patient contour is extracted from 
a registered PET image which is reconstructed 
without attenuation correction. (C) Truncation 
correction areas as extracted from the PET 
contours are added to attenuation map.
The segmentation algorithm was applied 
to a number of datasets from a large pool 
of volunteers from multiple MR systems. 
The algorithm yields expected results except 
for susceptibility and motion artifacts. While 
the truncation compensation algorithm works 
for most cases, the robustness needs to be 
further improved.
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Introduction
Philips has introduced its first whole body sequential 
PET/MR system. We present the current status of  
MR-based attenuation correction (MRAC) technique  
and its validation using data from both PET/MR and  
PET/CT systems.  

MRAC consists of MR image acquisition, segmentation, 
truncation compensation (TC), and μ-value assignment, 
as well as correction for patient table and RF coils. 
These components have been described earlier,1 but 
this paper focuses on updates of the two most critical 
steps of MRAC: segmentation and TC. 

Material and methods
MR image segmentation
MR image intensity is generally related to proton density 
which has no direct correlation with photon attenuation 
in PET. Thus, the simple approach of PET/CT to scale  
the CT values to a different energy range in order  
to construct the attenuation map is not feasible for  
PET/MR. Our approach employs segmentation of the 
MR image with subsequent assignment of attenuation 
coefficients to individual segments. The segmentation 
algorithm attempts to distinguish three biological  
classes: air, lungs, and soft tissue. 

For whole-body oncology PET/MR applications, special 
care must be taken to segment the lungs as accurately 
as possible, since structures that are either missed 
or incorrectly segmented lead to over- or under-
correction in the resulting PET image. In addition,  
in many patients considerable amount of air is found  
in the stomach and bowel. This, together with artifacts 
stemming from the cardiac and respiratory motion,  
can potentially lead to a poor delineation of the lungs  
in particular at the diaphragm (see Figure 1).

When using intensity-based methods without 
regularization based on a prior shape information,  
this easily leads to “leakage” of lung segmentation 
into the stomach and bowel. As an example, the 
center image in Figure 1 shows segmentation results 
employing region-growing with an intensity threshold 
as termination criterion. If the intensity threshold 
is lowered, the leakage improves, but more noise 
inside the lung also gets segmented, which leads 
to overcorrection in the PET image.

In order to circumvent these problems, we decided 
to use a Deformable Shape Model2 to regularize the 
segmentation. The model that we used was generated 
from manual segmentation of more than 20 high-
resolution CT datasets. It is a triangle mesh consisting 
of 3000 triangles, which is sufficient for the current 
purpose given the limited resolution of MR images. 

Figure 1  MR image (left), original segmented MR image (middle), 

and improved segmentation with lung model (right). 
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Figure 2  Schematic illustration of edge detection 

approach for truncated areas in MR. 

The segmentation procedure consists of the following 
steps. First, the model is initialized using intensity-based 
lung segmentation with a very low threshold. Then, the 
model is adapted to the patient image using an energy 
minimization scheme that minimizes the total energy,

E = Eext + αEint ,

consisting of an external energy stemming from the 
image and an internal energy reflecting the deviation of 
the mesh from its original shape. During the adaptation, 
iteratively for every triangle center a new position is 
determined according to

x̃i = xi + dn argmax{F(xi + jdn) – Dj2d2}
j=–l...l

where x is the original position of the triangle center,  
n is the triangle normal, d is a step size, k = 2 l + 1 is 
the number of steps to search, D is a distance weighting 
factor, and F is a feature function. In our case we use a 
step function as feature function (i.e., we expect a profile 
across the lung wall to look step-like), and we search  
30 steps in every direction with 1 mm distance with 
D = 0.5. The internal energy restricts the movement 
of the mesh vertices. A more detailed explanation is 
provided here.2 The external energy is then computed as

with g(xi) being the image gradient at position xi.

The internal energy restricts the movement of the mesh 
vertices and is defined as

with vi and vk being the new vertex positions, vi0 and 
vk0 being the original vertex positions, s is a scaling 
factor and R is a rotation matrix; for a more detailed 
explanation see [model]. In our case we use an external 
energy weight of a = 0.2.

Applying this iteration scheme, the mesh model is 
adapted to the individual patient dataset. Since it is well 
known that such mesh adaptation schemes are difficult 
to adapt to pointed edges (like the lower lung edges), 
some post-processing needs to be applied. We use a 
region-growing technique with two constraints, one 
being an intensity threshold that is estimated from the 
intensity distribution and the other being a distance 
criterion, i.e., the segmented voxel shall be inside the 
mesh model or not further than 2 cm outside of it.  
This constraint is efficiently applied via a distance  
map. In order to get rid of remaining noise voxels, 
morphological opening with a 6-star kernel of 1 voxel 
size is applied in addition. This scheme led in most 
clinical cases to acceptable lung segmentation.

MR image truncation compensation
The usable MRI FOV tends to be lower than the bore 
size, which causes MR image truncation close to FOV 
edge. This effect is most obvious in large patients or 
with patients holding their arms down during acquisition. 
While this image truncation may not normally be 
relevant in diagnostic MR evaluation, it leads to 
truncated and thus unrealistic attenuation maps 
for the PET reconstruction.

The following three-step approach to correct for 
truncation in the MR-based attenuation maps for PET 
has been developed and investigated. (A) Areas in 
the attenuation map which are possibly truncated are 
identified. (B) For these areas, an estimate of the outer 
patient contour is extracted from a registered PET image 
which is reconstructed without attenuation correction. 
(C) Truncation correction areas as extracted from the 
PET contours are added to attenuation map.Eext = ∑           ∑              (vi – vk –sR(vi0 – vk0))2 

i   kЄNeighbors(i)

Eext = ∑ wi (            (x̃i –xi))2
, wi = max{F(xi + jdn), 0}g(xi)

IIg(xi)IIi
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In step (A), the uncorrected attenuation map is tested 
slice-by-slice for sections extending beyond a safe inner 
disk with a radius of slightly less than the known  
FOV of rFOV = 230 mm. Each such section is considered 
as being potentially truncated. In Figure 2, a patient axial 
slice is illustrated, with the dark grey area visible in the 
MR image, while the light grey area has been truncated. 
For each section outside of the FOV, the tissue point 
lying farthest out with respect to the center of the MR 
FOV is detected and its radial distance rs to the center is 
calculated. Two feature points pF1 and pF2 are extracted 
by determining the intersections of each section 
with a circle of radius rs-δ, with δ being an empirical 
value describing the typical size of the MR image’s rim 
distortion due to truncation. A central point pF3 is added 
on the normal line passing the middle of the connection 
between the two feature points. The lines from pF3 to 
the other two feature points span a fan in which the 
contour search of the step (B) is being performed. This 
approach provides on the one hand that truncation areas 
are properly detected, on the other hand it conserves  
as much as possible from the existing MR information.

In step (B), the corresponding fan area in a registered, 
non-attenuation-corrected PET image is used to detect 
an outer patient contour. This is performed by applying  
a multi-scale approach and a canny edge search on the 
PET data. The outmost contour information of the two 
algorithms is used to derive the boundary information. 
The area enclosed by the connection line between pF1 
and pF2 and the newly detected contour line is filled with 
attenuation values corresponding to soft tissue and is 
inserted in step (C) into the slice in the attenuation map. 

Figure 3  Slice of attenuation map with effect of TC overlaid as bright areas 

(right). Corresponding slice of the non-attenuation corrected PET image (left). 
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Here, optional morphological filtering can be  
performed on the entire volume of truncation 
compensations in order to smooth it mainly in 
z-direction. A compensation example is shown in  
Figure 3, where the truncated areas are filled with  
the attenuation value of soft tissue.

The non-attenuation corrected PET (NAC) image is a 
good candidate for deriving the body contour to achieve 
the goal of MR image truncation compensation in the 
context of MR-based PET attenuation correction.  
Its main advantage is that it is almost readily available,  
as neither correction nor fine sampling of the raw data 
is required for the reconstruction. It is to be noted, 
however, that this image does often exhibit excessive 
image intensity distribution that prevents one from 
deriving a well-defined body contour. A class of artifacts 
related to the image characteristics of the NAC image 
is the concave-structure problem, as shown in Figure 4. 
The shape of concave structures in the truncated area 
(e.g., armpits and areas around the female breast) can’t 
be reproduced correctly by the truncation compensation 
algorithm. The cause for this is that the corresponding 
NAC image typically only contains an outer body 
contour which corresponds to the convex hull of the 
activity-filled areas. 

An alternative approach is to use the NAC image 
reconstructed with Time-of-Flight information  
(TOF-NAC), as shown in Figure 4. The TOF-NAC  
image clearly shows better boundary definition  
than the NAC image and thus represents a more 
promising perspective.
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Figure 4  NAC image (top left) and the truncation 

compensated attenuation map with the NAC image 

(bottom left), compared with the TOF-NAC image 

(top right) and the truncation compensated attenuation 

map with the TOF-NAC image (bottom right).

Figure 5  A big hole in the MR image (left) created by a 

cardiac stent on the chest gets translated into the attenuation 

correction map (middle); subsequently the impact on 

the final reconstructed PET image is visible (left).

Results and discussion
MR image segmentation
The segmentation algorithm was applied to a number  
of datasets (n>100) from a large pool of volunteers  
from multiple MR systems. The algorithm yields expected 
results except for susceptibility and motion artifacts. 
Application of respiratory gating could potentially 
mitigate respiratory motion artifacts. The MR image 
artifact introduced by a metal implant (Figure 5) 
cannot unfortunately be accounted for in the current 
segmentation algorithm.

MR image truncation compensation
In the earlier publication,1 a slightly simplified version 
of this truncation compensation approach has been 
investigated on simulated truncations. In these studies, 
artificially truncated attenuation maps were generated 
out of non-truncated CT data from PET/CT studies.  
The truncation compensation algorithm was then  
applied to these maps and its effect was compared  
to the known body contour from the CT data.

In the current study, we demonstrate the effect of 
truncation compensation in the real PET/MR image 
processing pipeline of the novel Philips whole-body  
PET/MR system. The MR maps acquired for the purpose 
of attenuation correction are in a first pass converted 
to attenuation values in a segmentation pipeline. This 
pipeline was described earlier and performs a separation 
of the outer region from the patient volume, identifies 
the lungs by a combined intensity-based and model-
based segmentation and features further processing 
steps to deal with small structures and bowel air.  
At this point in time, the resulting attenuation map 
consists basically of three material types: air, soft tissue, 
and lung tissue. This map represents the input data  
for the truncation compensation algorithm. 

The purpose of this investigation was to demonstrate 
the fidelity of truncation compensation on PET/MR 
patient data. Since no ground truth (i.e., a non-truncated 
patient image) was available, the validation strategy 
consisted of visual interpretation of the TC images.  
For this purpose, the non-attenuation-corrected PET 
image and the uncorrected and corrected attenuation 
map were analyzed in parallel slice by slice.  
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The truncation-compensated areas were identified by 
a direct comparison of the two attenuation maps. The 
corrections in the attenuation map slices were rated 
for shape agreement with the PET boundary as well as 
for rim continuity between the original and the added 
soft tissue information. A difference of more than two 
voxels (8 mm) was considered a failure of the algorithm. 
One example of successful TC is displayed as coronal 
view in Figure 6. It is, however, not easy to find any 
apparent differences when directly comparing the two 
final reconstructed PET images before and after the TC 
being applied. The difference image does reveal dramatic 
quantitative changes around the arms region where the 
truncation compensation has the biggest effect. As far as 
the main trunk of the body is concerned, the observed 
difference is within a few percent for inner anatomic 
structures while relative changes are much higher close 
to the surfaces of the structures due possibly to lower 
counting statistics. 

A set of 30 patient cases, covering a total of over  
5000 axial slices, was investigated. These cases included 
truncation at the chest and torso in large patients, 
truncations at the arms in arms-next-to-the-body 

Figure 6  Example of successful 

truncation compensation.  

Left: MR-based attenuation map (top) 

and reconstructed PET image (bottom) 

before TC.  

Middle: MR-based attenuation map (top) 

and reconstructed PET image (bottom) 

after TC.  

Right: Relative percentage difference 

between the PET images with and 

without truncation compensation.

20% -4%

scanning position, as well as truncation at the arms in 
arms-up scanning position. The observed percentage 
statistics for TC is displayed in Figure 7. Overall about 
63% of the slices were not truncated and about 27% 
were successfully compensated for truncation, while  
for the remaining 10% of the slices TC was suboptimal.

Several challenging scenarios were identified where 
the current TC algorithm tends to falter:
1. The shape of concave structures in the truncated  

area (e.g., armpits and areas around the female breast) 
can’t be reproduced correctly by the TC algorithm,  
as shown in Figure 4.

2. For very large patients even the PET image itself  
was truncated. This led to improper TC since no 
realistic patient contour could be extracted from  
the PET data.

3. Large gaps were present between the arms and the 
body. These resulted in truncated arm cross sections 
which appeared as small, isolated spots in transverse 
plane, as shown in Figure 8. 

Improvements to the algorithm to address these specific 
issues are being currently implemented, in particular 
by using the Time-of-Flight-based non-attenuation-
corrected PET images (TOF-NAC), as shown in Figure 4.

It is also to be noted that the current TC algorithm  
is targeted primarily for the PET imaging with FDG as 
radioactive tracer. For the PET applications with other 
tracers, further investigation is required to determine  
its applicability.
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Figure 8  Axial slice of attenuation 

map where truncated arms appear 

as small, isolated spots.

Figure 7  Performance statistics of truncation compensation (TC).
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Conclusion
We have implemented and improved the MR-based 
attenuation correction method for a clinical whole-body 
PET/MR system. While awaiting future clinical validation, 
the algorithm is promising from preliminary patient data 
evaluation. Although the 3-segment MRAC resembles 
the results from short PET transmission scans, future 
work might be needed to implement and validate 
segmentation of more tissue classes, such as cortical 
bone, fat, and muscle. 
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