Truly digital PET imaging

Philips proprietary Digital Photon Counting technology

Vereos PET/CT is the first commercially available scanner to offer truly digital PET, resulting in significantly improved performance compared with an analog system.* Digital PET is made possible through a number of advances, including proprietary digital photon counting (DPC), 1:1 (pronounced “one-to-one”) coupling between the scintillator element and the detector element, and faster Time-of-Flight (TOF) technology.

Philips DPC technology was developed to overcome the limitations of conventional photomultiplier technology. DPC in combination with 1:1 coupling and enhanced TOF allows the Vereos system to offer approximately double the volumetric resolution, sensitivity gain, and accuracy of a comparable analog system.

Overcoming limitations of conventional PET
Key advances contribute to the high level of performance of Vereos digital PET/CT:

1. Digital photon counting (DPC)
2. Detector tile design
3. DPC and 1:1 coupling
4. Factors influencing performance specifications
5. Timing resolution and Time-of-Flight (TOF) technology
6. Point spread function (PSF) technology
7. Technology pillars supporting improved performance

Vereos PET/CT specifications
Preliminary performance data, subject to change.

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of detectors</td>
<td>23,040</td>
</tr>
<tr>
<td>System spatial resolution</td>
<td>4.1 mm</td>
</tr>
<tr>
<td>Effective system sensitivity**</td>
<td>22.0 kcps/MBq</td>
</tr>
<tr>
<td>Effective peak NECR**</td>
<td>650 kcps @ 50 kBq/mL</td>
</tr>
<tr>
<td>Maximum true</td>
<td>> 900 kcps</td>
</tr>
<tr>
<td>System timing resolution</td>
<td>345 ps</td>
</tr>
<tr>
<td>Quantitative accuracy</td>
<td>± 5%</td>
</tr>
</tbody>
</table>

* GEMINI TF 16
** Effective gain defined as a ratio between patient size (20 cm diameter used in these specifications) and Time-of-Flight localization accuracy.
1. Digital photon counting (DPC)

At the heart of the digital PET system is Philips proprietary digital photon counting (DPC) technology. This was developed in order to overcome the limitations of conventional photomultiplier technology.

During a PET scan, detectors need to be able to accurately pick up and locate the pairs of high-energy photons that are emitted when positrons, produced by the decay of the radioactive tracer that is introduced into the body before the scan, interact with electrons in the body. Scintillating crystals are used to collect these pairs of high-energy photons and convert them to visible light, which is then picked up by a light sensor (photomultiplier), with the output being an electronic signal (ultimately used to construct the resulting image).

Different types of light sensors have been developed over the years: arrays of photomultiplier tubes (PMTs), avalanche photodiodes (APDs), analog silicon photomultipliers (SiPMs), and now – as used in the Vereos PET/CT system – DPC technology.

The older technologies have limitations. PMTs are widely used today, and were the foundation of PET imaging. However, PMT design has reached its limits in counting performance, due to the relatively large size of the device and the timing resolution.

APDs have been used in PET systems for many years, but although they have a higher sensitivity than PMTs, APDs offer lower internal gain and no TOF capability.

Analog SiPMs use single photon avalanche diode (SPAD) arrays. These are capable – as the name suggests – of detecting single photons. However, when used in conventional analog SiPMs, the pulses generated by multiple photon detections (avalanche diode breakdowns) are combined into an analog output signal that requires extensive off-chip processing to produce a photon count and time of arrival for the photon (see Figure 1). Also, analog noise interferes with the signal, making it even harder to exactly determine the number of photons and the time of arrival.

![Figure 1 Processing of the analog signal in conventional analog SiPMs](image1)

![Figure 2 Digital in/digital out photon counting in the digital SiPM](image2)

In contrast to analog SiPMs, the digital SiPMs seen in Philips DPC technology enable the detection and counting of the breakdown of individual SPADs on-chip. Light photons produced by the scintillator are counted directly by the chip, yielding a pure binary signal (0 or 1). This is achieved without the need for amplification or off-chip analog-to-digital processing of the signal (see Figure 2), which also minimizes signal noise.

Conventional CMOS (complementary metal-oxide-semiconductor) process technology is used to combine SPADs and low-voltage CMOS logic on the same silicon substrate. With both the sensor and the data processing now on a single silicon chip, photon counting in ultra-low light levels (down to single photons) is faster, more accurate, and fully scalable.

In practice, how are the DPC measurements made? During a scan, when the first photon reaches a sensor the integrated (on-chip) photon counter increases to 001, and the integrated timer measures the arrival time of the first photon per die (four pixels) (Figure 3, top left). When the second and third photons hit sensors, the photon counter increases to 002 and 003 respectively (Figure 3, top right and bottom left). At the end of the desired length of the detection process, the values of the photon counter and timer can be read (Figure 3, bottom right).

Data acquisition is initiated by a trigger signal, generated when the number of photons detected in a pixel becomes higher than the configured trigger threshold.

Figure 3 Digital photon counting in practice, showing the arrival and detection of individual photons, and timing measurements.
2. Detector tile design

The DPC technology used in the Vereos system takes the form of highly integrated arrays, or tiles, that contain more than 400,000 cells, each of which is capable of detecting a single photon.

Each tile consists of 16 independent die sensors, arranged in a 4 x 4 matrix. Each die sensor consists of four pixels, arranged in a 2 x 2 matrix. Each of these pixels contains 3,200 cells.

Each of the four pixels on a die has a photon count value. Each die contains a pair of time-to-digital converters, which generate a single timestamp for registered photon detection events.

The generation of a trigger signal – when the number of photons detected in a pixel becomes higher than the configured threshold – prompts a timestamp to be saved, and begins a validation process to detect a user-configured number of further photons within a certain time. If this validation threshold is exceeded, there is a subsequent integration period before a readout process sends data (four photon count values – one per pixel on the die – and one timestamp per event) to a readout buffer. After readout, the cells are recharged so that the die is ready for further data acquisition. Cells are also recharged immediately if the original event is not validated. Figure 4 shows the full data acquisition sequence, and the timings involved.

![Diagram of data acquisition sequence]

Figure 4 The data acquisition sequence within each die in a digital SiPM.

Figure 5 Dark counts of cells in a sub-pixel, at room temperature. Reproduced from Haemisch Y, et al. Physics Procedia 2012;37:1546-60.
The design of the DPC technology allows every cell to be individually activated or inactivated. This means that background noise – the dark count rate – can be measured and managed effectively.

By switching on and off each individual cell, in a fully dark environment, a map of dark counts can be produced automatically by the system (see Figure 5 for an example). A cumulative logarithmic plot of dark counts (see Figure 6) shows that the overall dark count rate can be reduced by orders of magnitude by switching off just a few "bad" cells (the top 1-5%).

The DPC technology is also much less sensitive to temperature variations than conventional analog SiPMs. In analog SiPMs, the temperature dependence of the ionization coefficients and holes in silicon leads to a (temperature-dependent) drift in each sensor’s breakdown voltage and a change in gain. In DPC technology, any shift in breakdown voltage must exceed the threshold voltage of the CMOS inverter before the count rate is affected.

The implications of DPC and 1:1 coupling will be discussed in the next section.

Figure 6 A cumulative logarithmic plot of dark count rate as a function of the number of active cells. Reproduced from Haemisch Y. et al. Physics Procedia 2012;37:1546–60.
3. DPC and 1:1 coupling

In the detectors used in the Vereos PET/CT system, each scintillator is connected to a single detector pixel. This is called 1:1 coupling (see Figure 7).

The 1:1 coupling of scintillator crystals to sensors (due to factors such as the fast timing resolution, reduced pile-up effects, and TOF benefits) allows for a much higher count rate capability compared to analog* systems.

The direct 1:1 coupling also results in an improved spatial resolution. The final spatial resolution of a PET image is the result of various factors, some related to the annihilation events and interactions (such as non-co-linearity of annihilation photons, and the positron range), and others related to the detection system (such as the scintillation crystal size and performance). In the Vereos system, with 1:1 coupling, the inherent high resolution is determined largely by the crystal size. This eliminates most of the distribution tails in the detector response function shown in Figure 8). Eliminating the tails has two significant effects. Given the same sensitivity (counts), there will be more counts in the center of the response distribution than in a conventional analog* system: there will be more “good” counts, and the effective sensitivity increases. In addition, the reconstruction task is now much easier, as the purpose of the reconstruction is to recover the dispersed data. The end result is a more uniform image.

*GEMINI TF 16

Figure 7 Comparison of analog* and digital photon counting. A PMT covers multiple crystals in the analog* system, while the digital system shows 1:1 coupling between scintillator crystals and single photon counters.
“With PMTs there are peaks and valleys in detector resolution performance across a detector module – a worse resolution under each tube and at the edges. With the digital system it is uniform across each and every pixel.”

Ling Shao, Director
Advanced Molecular Imaging, Philips

Because they are pixelated, the digital detectors in Vereos also show a uniform resolution across their surface, and across the entire field of view. This is in contrast with PMTs, which typically have a worse resolution directly underneath the tubes and at the edges of the field of view.

This uniformity in resolution across the detector surfaces in the Vereos system is one of the reasons why standardized uptake values (SUVs) can be measured more accurately and uniformly than in analog systems. The SUV represents a quantitative measure of radioactivity levels, taking into account body weight, and can be used, for example, to evaluate the response to therapy in individual cancer patients. The improved accuracy of SUV measurements – especially important as these are often used in clinical trials and primary research – is further underlined by the highly stable nature of digital PET electronics.

Users will also benefit from Vereos’ high peak true rate (>900 kcps), also known as the maximum true rate. This is the maximum count rate, which occurs at a certain level of activity, beyond which the system is paralyzed. With Vereos, researchers can perform high count rate studies, such as short-lived isotope dynamic and bolus imaging, while maintaining sensitivity – important for quantitative accuracy.

Figure 8 Detector resolution. The total counts for Vereos (red line) and analog systems (black dotted line) are the same, but the response distribution for Vereos has much less of a tail (fewer bad counts).
4. Factors influencing performance specifications

A number of different factors influence and enhance the performance specifications of the DPC technology used in the Vereos system.

Line of response (LOR)-based reconstruction
Conventional sinogram PET imaging reconstruction – the process of using mathematical modeling to construct the scan image from the collected data – includes a pre-processing line-of-response (LOR) step in which raw LOR data are assigned to a number of “bins” so that evenly spaced uniform sinograms of the data can be produced. This means that the precise positions of LORs need to be approximated in order to be assigned to a defined sinogram bin, ultimately resulting in a loss of information and a reduction in timing and image resolution.

In contrast, the list-mode reconstruction method used in Vereos does not involve this binning of raw LOR data. Data on the location and timing of annihilation events, including time of flight information, are retained, so there is less potential for introducing error in the reconstruction process.

Detector spatial resolution definition
The 1:1 coupling used in Vereos results in a non-Gaussian, more rectangular intrinsic detector response than is produced by analog* detectors. As Figure 10 shows, the two types of system can produce curves with effectively the same spatial resolution, as measured by both the full width at half maximum (FWHM) and the full width at tenth maximum (FWTM).

However, the small difference in the area under the tails seen here in two dimensions translates to a much greater difference in the volume under the tails in a three-dimensional plot. The black curve in Figure 9 would need to be scaled down to the dotted black line, given the same counts (the same overall system sensitivity), ultimately meaning a diminished resolution in the analog system and a lower effective sensitivity.

Energy resolution and spectrum/system dead time
The 1:1 coupling and sharp detection pulses seen with the DPC technology in Vereos effectively eliminates problems caused by coincident event pile-ups and electronic drift seen with analog systems. These problems can occur in analog* systems if there is a high level of activity and two or more events are detected almost simultaneously. In terms of resolution and the energy spectrum, pile-ups and drift cause good counts to be pushed out of the observed energy window, in favor of scatter counts. In terms of system dead time, the overlapping of the distributions for almost simultaneous events means a loss of sensitivity and the system will be partially dead at high count rate.

![Figure 9](image1.png) The FWHM and FWTM are essentially the same for the red (Vereos) and black (analog* PET) distributions, but the different shapes of the distributions have important implications for 3D imaging.

![Figure 10](image2.png) The sharp and discreet detection enabled by digital SiPMs translates into a much reduced effect of dead time factors on Vereos compared with the analog* system [Philips, data on file].

Note
- Results are based on a uniform phantom (20 cm diameter and 30 cm long)
- Vereos results are preliminary and may be changed
The benefits of 1:1 coupling in terms of dead time are further illustrated by a plot of activity concentration against dead time factors for Vereos and an analog* system (see Figure 10). Dead time factors are defined as the inverse of the actual counts divided by the expected counts. As the graph shows, at an activity of 10 kBq/mL (seen in many typical whole body studies) dead time factors are already close to 1.17 for the analog* system, but remain almost 1 for Vereos. This effectively means an additional 17% sensitivity gain for Vereos.

Sensitivity measurement

NEMA (National Electrical Manufacturers Association) sensitivity is a measure of a system’s ability to convert photons to raw counts. However, this measure was developed for analog systems and does not take into account the quality of counts, such as the impact of TOF, the spatial resolution, and the degradation with high count rate (or dead time). For optimal sensitivity, therefore, obtaining good counts is more important than obtaining many mixed counts. The point source response functions of PMT systems, for example, tend to show long tails, containing bad counts.

Digital PET offers real sensitivity gains, largely due to the application of TOF. The effective sensitivity gain is $D/\Delta x$, where D is the object diameter and Δx is position uncertainty along the line of response, equal to the speed of light (c) multiplied by time resolution divided by 2 ($\Delta t/2$).

Calculations for a range of object diameters show a sensitivity gain with Vereos of 3.9 for an object with a diameter of 20 cm, 5.8 for an object with a diameter of 30 cm, and 7.7 for an object with a diameter of 30 cm – objects approximately representing a brain, small body, and large body respectively [Philips, data on file].

Reconstruction and noise

The process of reconstruction involves mathematically estimating the original radioactivity distribution, based on the collected dispersed data. This brings with it penalties in terms of noise. However, Vereos’ 1:1 coupling of crystals to sensors, better TOF resolution, and non-Gaussian detector response function reduces the reconstruction noise. Less noise translates into increased sensitivity.

5. **Timing resolution and Time-of-Flight (TOF) technology**

In conventional non-TOF PET, the image reconstruction process must assume that there is a uniform probability that the annihilation event occurs at any one point along the line of response (LOR). This major limitation has been overcome by the development of TOF technology.

Vereos has a fast timing resolution of just 345 ps (currently the fastest resolution on the market). This is the minimum time interval between two photon events required for them to be recorded as separate events. In systems with fast timing resolution, TOF is able to be used to locate each annihilation event on a specific part or segment of the LOR. The difference in flight time for the two photon events is used to produce a more localized distribution of probabilities (see Figure 11). For Vereos, the TOF localization accuracy is 5.2 cm.

This has the effect of improving effective sensitivity and image quality, and the speed of processing. With effective sensitivity gain defined as $D/\Delta x$ (where D is the object diameter and Δx is position uncertainty along the LOR), reducing the position uncertainty through the application of TOF leads to a real sensitivity gain.

Calculated effective sensitivity gains for Vereos, due to the benefits of TOF technology, demonstrate greater gains for larger diameter objects: 3.9 for a 20 cm diameter, rising to 7.7 for a 40 cm diameter [Philips, data on file]. TOF may be particularly beneficial in larger, heavier patients, as increased levels of attenuation and scatter in these patients would typically result in poor quality PET images in the absence of TOF.¹

Figure 11 How TOF technology can lead to improved localization of the annihilation event along the LOR.

6. Point spread function (PSF) technology

Vereos makes use of a point spread function (PSF) algorithm to correct for partial-volume effects in PET images. PET spatial resolution can be influenced by factors such as the positron range (which is radioisotope-dependent), non-co-linearity of annihilation photons, crystal/detector size, and reconstruction parameters such as voxel dimensions and the use of post-filters.

PET scanner resolution can therefore be spatially variant, resulting in blurred images if not corrected for. A system’s PSF is determined by imaging point-sources at many different locations within the scanner, producing a three-dimensional PSF. Correcting for this PSF allows users to retrieve images that closely match the true object scanned (see Figure 12).

Experience with PSF correction in the analog Ingenuity TF PET/CT system has demonstrated good improvement in image resolution and quantification. The same method is applied in Vereos. Overall, PSF needs to be used carefully, as it can significantly influence quantitative accuracy. Users can adjust two parameters: the number of iterations and a regularization factor. Evaluations using phantoms and clinical patients suggest that 1-2 PSF iterations is sufficient to recover resolution, with more iterations leading only to increased noise in the final image. Choosing PSF regularization values similar to the resolution of the scanner (in this case 6-8 mm) provided good resolution without excessive noise or quantification errors.

The effects of applying various values for iteration and regularization in PSF correction can be seen in the following images from a phantom study (Figure 13).

In addition, Vereos has the ability to reconstruct images with a voxel size of 1 mm, which further minimizes pixel sampling errors and improves image quality.

![Figure 12](image.png) Correcting for a system’s PSF provides optimal image clarity.

![Figure 13](image.png) Transverse slices of 2 mm voxel ACR (American College of Radiology) phantom images, for various PSF iterations and levels of regularization. Reproduced from Narayanan M, Perkins A. Resolution recovery in the Ingenuity TF PET/CT.

Data originally courtesy of the Hospital of the University of Pennsylvania.
7. Technology pillars supporting improved performance

The Vereos system has approximately double the volumetric resolution, sensitivity gain, and accuracy of a comparable analog* system. These benefits are gained through the advantages offered by DPC technology, enhanced TOF, and 1:1 coupling.

The improved volumetric resolution is largely due to 1:1 coupling. The overall resolution is typically expressed as the full width at half maximum (FWHM), which has been calculated as 69 mm³ for Vereos. The 1:1 coupling improves overall volumetric resolution through the gains in spatial resolution seen across the entire field of view.

Most of the improved sensitivity gain seen with Vereos is attributed to the application of TOF to more accurately locate each annihilation event along the line of response (LOR). The result is less dispersed data, and improved image contrast. The remaining improvement is accounted for by 1:1 coupling, due to the resulting fast timing resolution and lack of noise when light is converted directly to a digital signal.

Sensitivity gains have been measured for a range of object sizes. For a typical patient body size (Δ30 cm), the Vereos system showed a sensitivity gain of 5.8, compared with a gain of 3.3 with the analog system (both compared with non-TOF). With the additional 20% to 25% sensitivity gain due to less dead time, the overall clinical sensitivity gain is about a factor of 2. Such improvements in sensitivity produce high quality images (see Figure 14).

The quantitative accuracy of Vereos has been calculated to be +/-5%, compared with +/-10% for the analog comparator. Most of this improvement (70%) is attributed to key characteristics of digital SiPMs, namely a high level of stability at different temperatures, and the ability to reduce dark counts. The uniform detector resolution enabled by 1:1 coupling accounts for the remaining improvement in accuracy.

“With 1:1 coupling, we get not just more information but enhanced information and more certainty. We’re better able to identify the source of the annihilation event, improving the volumetric resolution.”

Chuck Nortmann, Clinical Product Manager
Advanced Molecular Imaging, Philips

*GEMINI TF 16

Figure 14 Sensitivity gain is approximately doubled with the Vereos system compared with the analog Gemini TF 16 system.